OpenLMI CIM Provider HOWTO

John Dennis jdennis@redhat.com

3/30/2013

Contents
License

Introduction

WBEM Components

What do I need to know to write a CIM provider?
CIM Schema, MOF and Profiles
CIM Schema and MOF Syntax
Models and Profiles oo

Tools and Packages
CIMOM’S o e
Development Tools L.

Client Tools e

Writing a CIM provider for OpenLMI
OpenLMI Development Conventions
Set-Up Your Environment L oL
Install CIMOM
Install YAWN

mailto:jdennis@redhat.com

Install Client Tools
Install Provider Development tools
Begin Provider Development (C Language)
Perform a Build oo

Understanding KonkretCMPI Behavior
Installing and Registering Your Provider
Testing Your Provider
Development Debugging Tricks and Techniques

Starting, Stopping and Controling OpenPegasus

Run OpenPegasus In The Foreground

Using the Debugger

Controlling OpenPegasus Behavior

OpenPegasus Logging and Tracing

Dumping Method Parameters To the Console
Provider Development Tips
MOF Development Issues

Structures and Array of Structures as CIM Method Parameters .
KonkretCMPI Oddities

OpenPegasus Authentication

Advanced CIM Topics
Resource Configuration

Tying the Configuration Classes Together
FAQ

Vocabulary

License

This document is licensed under the Create Commons ShareAlike license

You are free:

20
20
23

24

24

http://creativecommons.org/licenses/by-sa/3.0/

To Share To copy, distribute and transmit the work
To Remix To adapt the work

Use commercially To make commercial use of the work
Under the following conditions:

Attribution You must attribute the work in the manner specified by the author
or licensor (but not in any way that suggests that they endorse you or your
use of the work).

Share Alike If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same or similar license to this one.

Introduction

CIM stands for Common Information Model. CIM is one component of WBEM
(Web-Based Enterprise Management). WBEM is a technology suite allowing one
to remotely enumerate the computing resources in an enterprise, query their state,
modify their configuration and otherwise act upon those resources. People often
use the term CIM when they are actually discussing WBEM. Technically CIM
is only a schema and specification. The suite of specifications and technologies
providing enterprise computer management based on the CIM model is WBEM.

CIM is an open standard under the auspices of DMTF (Distributed Management
Task Force). WBEM Management tools based on CIM allow IT administrators to
manage diverse computing resources in a heterogeneous environment. In addtion
to CIM DMTTF also manages many of the specifications related to WBEM.

If you’ve been asked to write a CIM provider this document will introduce you
to the relevant technologies and guide you through the development process.

WBEM Components

Although technically CIM is only a schema definition the common usage of
the term CIM is often taken to mean the collection of tools and technologies
enabling computer management, i.e. WBEM. Without the overarching technology
ecosystem that WBEM provides CIM would just be a paper abstraction. Lets
briefly explore how these independent components fit together to form a WBEM
management solution.

A manged system runs a service called the CIMOM, sometimes referred to as
a broker. CIMOM stands for Common Information Model Object Manager.
Typically the CIMOM is connected to the internet so that it can provide remote

http://www.dmtf.org/
http://www.dmtf.org/

administration of the computer. The CIMOM will load a set of providers. Each
provider is a software module dedicated to managing one type (i.e. class) of
resource on the computer, for example network interfaces. There may be multiple
instances of that resource class. The provider is responsible for managing all
instances of that resource class. The provider in addition to providing information
about a resource instance may optionally allow the resource instance to be
configured or acted upon. It is the CIMOM which organizes all the providers
on the system and grants a CIM client access to those providers. There are
many CIMOM implementations available. Since all CIMOM’s are supposed
to follow the collection of WBEM standards all CIM clients should be able to
inter-operate with each CIMOM.

A CIM provider can be loaded into different CIMOM implementations if both the
CIMOM and the provider utilize a common programming API. CMPI (Common
Manageability Programming Interface) is the standardized API all CIMOM’s
and provider’s should be coded to.

A CIM client is able to connect to a CIMOM and interact with the resources
(i.e. objects) being managed by the CIMOM. It is important to note a CIM
client does mot interact directly with a provider running in the CIMOM. Rather
the CIMOM will expose to the CIM client the objects made available to the
CIMOM via it’s set of loaded providers.

Communication between a CIM client and a CIMOM occurs via standardized
protocols. At the time of this writing only one protocol is in wide use, CIM
Operations over HT'TP. This protocol establishes HI'TP headers and then passes
the CIM payload as an XML document to the CIMOM. Responses from the
CIMOM are also encoded in XML. The definition of the XML documents are
defined in Representation of CIM in XML. The collection of standards used by
CIM clients and CIMOM brokers are known as WBEM (Web-Based Enterprise
Management).

In a typical scenario a CIM client will make an authenticated connection to a
CIMOM and ask it to enumerate the set of objects it’s interested in. The CIM
client may choose to enumerate all instances of a specific class or it may utilize
a query language to refine the results. CIM objects are often related to one
another via Associations. Querying via associations is very similar to performing
a join in SQL.

CIM objects have properties and methods. A property is a piece of data and a
method is a function you can call. A CIM client may examine the properties
of a returned object to determine it’s health state, configuration, status, etc.
Configuration is an advanced topic explained in greater depth in Resource
Configuration.

A lot of information has been presented in a short time, to help clarify here is
simple break down of how the components fit together.

1. CIM client makes authenticated connection to a CIMOM.

http://www.dmtf.org/standards/wbem
http://www.dmtf.org/standards/wbem
http://www.dmtf.org/standards/wbem

2. Using the HTTP protocol an XML document is passed from the CIM
client to the CIMOM. The XML document describes the requested CIM
operation. Formation of the XML document is performed by CIM client
API library routines.

3. The CIMOM interprets the XML document and calls routines in it’s
providers to service the request.

4. The CIMOM communicates with it’s providers using the CMPI C language
APL

5. The CIMOM coalesces the information supplied by it’s providers and forms
an XML document which will then be returned as the HTTP response to
the CIM client.

6. Library routines in the CIM client parse the XML document and return
the information via a CIM client API.

What do I need to know to write a CIM provider?

CIM is an extraordinarily complex topic. Without some guidance one can easily
get lost in the wealth of material resulting in spinning your wheels without
making a lot of progress. In this section we try to summarize some key aspects
of CIM and direct you to information that will help you complete your task
while helping you stay clear of material which is not relevant.

Material deemed to be critical will be highlighted

In a single sentence like this.

CIM Schema, MOF and Profiles
CIM Schema and MOF Syntax

CIM models real world objects and their relationships. Those objects are modeled
via CIM classes. A CIM class has properties and methods. The DMTF has
defined a set of CIM classes which are meant to be the building blocks for a
CIM model, this is the CIM Schema. The CIM Schema is expressed in the
MOF Managed Object Format syntax. MOF files are used to define provider
interfaces.

You must be fluent in MOF, it is the language of CIM.

http://www.dmtf.org/standards/CIM
http://www.dmtf.org/standards/cim

Models and Profiles

A model is a collection of schema elements designed to model a computer system
component which is to be managed. It defines the schema classes used to
represent the managed elements and their relationships. At it’s heart a model is
pure CIM Schema but schema alone is not sufficient to explain intended usages
nor the rules for how the schema elements interact. This expository material is
collected into a document called a profile. Profiles follow a standardized format
called the Management Profile Specification Template. DMTF has already
defined numerous profiles to cover common computer system elements, these are
collected in the Management Profiles web page. For some reason the primary
CIM page on the DMTF website does not link to the management profiles. This
curious omission might cause you to miss the critical aspect of CIM profiles.

Prior to starting a CIM provider peruse the Management Profiles
to determine if one or more profiles already exist, if so you should
implement that model.

Are you creating a model or implementing an existing pro-
file?

If a profile already exists your job is tremendously simplified. The profile lays out
the exact classes you have to implement along with the rules for how they interact.
Chapter 9 of the profile is especially useful because it illustrates expected use
cases with examples, this can greatly aid your comprehension of the model and
it’s profile. If a profile exists it is not necessary to understand the breath and
depth of the CIM Schema, the necessary schema elements have already been
assembled for you. At this point you can move on to the provider implementation
tasks at this point using the profile as a recipe.

However if a profile does not yet exist for your provider you must define one. Un-
fortunately this is a very challenging task, it demands an in-depth understanding
the CIM Schema as well as a working knowledge of the existing profiles. You
need a familiarity with the existing profiles in order to understand the design
patterns of CIM, otherwise your provider will not function as expected.

If you do find yourself in the position of having to author a model/profile then
you should read the Using the Schema and Extending the Schema sections in
this tutorial section. It will provide the conceptual framework for schema design
decisions.

CMPI and KonkretCMPI

OpenLMI encourages the use of KonkretCMPI to aid provider development.

http://www.dmtf.org/standards/profiles
http://www.dmtf.org/standards/profiles
http://www.dmtf.org/standards/profiles
http://www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/using/index.html
http://www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/extend/index.html
http://www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/intro/components.html

You will want to read the KonkretCMPI Documentation to understand
the basic development process with KonkretCMPI.

You might be tempted after reading the KonkretCMPI documentation to dive
and begin writing a provider believing KonkretCMPI given you all you need to
know to complete the task. But the truth is you’re not writing to a Konkret CMPI
API, instead you're writing your provider using the CMPI API. Essentially what
Konkret CMPI does is insulate you from CMPI. KonkretCMPI gives you a layer
over CMPI that provides a nice level of abstraction and other utility support.
The other primary advantage of KonkretCMPI is it automatically generates all
the necessary stub functions needed to comply with CMPI. After KonkretCMPI
runs you need to add your implementation to the function stubs KonkretCMPI
generated for you. Overall this simplifies the development process.

However, if you don’t have an understanding of CMPI from the outset you’ll
likely find what KonkretCMPI generates confusing because it will seem to exist
in a vacuum. You won’t necessarily understand how or why all the code pieces
generated by KonkretCMPI fit together. You might find yourself asking were
certain initialization is performed or in what order, how to manage life cycle,
how are errors handled, etc. All of this is clearly spelled out in the CMPI spec.
You’ll probably also discover what KonkretCMPI gives to is incomplete, not
everything you may need to do in your provider is covered by KonkretCMPI.
There is an excellent chance you’ll need to call the CMPI API directly for services
not provided by KonkretCMPI. It’s best to think of KonkretCMPI as a CMPI
helper, it is not a CMPI replacement (i.e. wrapper around CMPI).

Therefore you should also read the CMPI Specification

The CMPI specification is long, here is my suggestion for reading it to get started.
Read chapters 1-5, those chapters lay out the basic model and groundwork. If
you understand those concepts you're in good shape. The remaining chapters list
the function tables and detailed descriptions of each function in it’s respective
table. You don’t need to know the details of each function, but it helps to
know what is available. I would suggest perusing the beginning of each of these
remaining chapters just to see what’s available in table, you can skip the per
function detail.

The CMPIT specification describes the CMPI APT at the raw C level. It can be
very verbose code which is ripe for simplification through pre-processor macros.
Standard macros are defined in /usr/include/cmpi/cmpimacs.h. Most code
will use those macros and as such those macros are the effective CMPI API. You
should be using these standard CMPI macros and be familiar with them for
those cases where KonkretCMPI does not provide an alternative.

You should be familiar with the contents of cmpimacs.h.

http://konkretcmpi.org/KonkretCMPI.html
https://www2.opengroup.org/ogsys/catalog/C061

Tutorials

At this point you now have enough background information to dive into the
DMTF CIM Tutorial. This tutorial will help clarify the concepts already
presented and round out material we have glossed over. The tutorial is brief and

a bit superficial, it may or may not satisfy your needs for the comprehension of
CIM.

Read the DMTF CIM Tutorial.

On the other hand the Learn CIM is much more complete and goes into much
more depth. Not everyone will need the material here but many will find it
helpful. A good strategy is to skim the tutorial making note of the material it
covers and then later when confronted with a gap in your comprehension return
to the tutorial.

Tools and Packages

CIMOM’s

e OpenPegasus OpenPegasus is an open-source implementation of the DMTF
CIM and WBEM standards. OpenPegasus is written in C++ and is
designed to be portable. It builds and runs on most versions of UNIX,
Linux, OpenVMS, and Microsoft Windows.

RPM package name: tog-pegasus
You may find the OpenPegasus Administrator’s Guide useful for topics

concerning installation, configuration, authentication, etc. of OpenPegasus.

e SFCB Small Footprint CIM Broker. SFCB is a CIM server for resource-
constrained and embedded environments. It is written in C and designed
to be modular and lightweight.

RPM package name: sblim-sfcb

Development Tools

e KonkretCMPI is used to generate C source code for providers from a mof
specification.

RPM package name: konkretcmpi
e CMake is the required build tool. Various aspects of OpenLMI provider

development and deployment are automatically handled via custom CMake
macros provided by OpenLMI.

RPM package name: cmake

http://www.wbemsolutions.com/tutorials/DMTF/
http://www.wbemsolutions.com/tutorials/DMTF/
http://www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/start.html
https://collaboration.opengroup.org/pegasus/
http://cvs.opengroup.org/cgi-bin/viewcvs.cgi/*checkout*/pegasus/doc/Admin_Guide_Release.pdf
http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb
http://konkretcmpi.org/
http://www.cmake.org/

e PyWBEM PyWBEM is a Python library supporting CIM operations over
HTTP using the WBEM CIM-XML protocol. It is easy to use and master.
PyWBEM also provides a Python provider interface suitable for rapid
development of CIM providers.

RPM package name: pywbem

e OpenLMI OpenLMI maintains numerous development tools to ease the
task of CIM provider development, deployement and WBEM operations.

RPM package name: openlmi-providers-devel

Client Tools

e PyWBEM can be used for client scripting in Python.

e YAWN Yet Another WBEM Navigator. YAWN runs in the Apache web
server, it is Python based and utilizes Apache’s mod-python. It is a CIM
client tool in that it provides a way to browse CIM Schema and exercise
CIM providers from within your local web browser.

RPM package name: yawn

e OpenLMI OpenLMI maintain several client tools

RPM package name: openlmi-tools

Writing a CIM provider for OpenLMI

OpenLMI Development Conventions

OpenLMI has established a number of development conventions which you will
want to observe.

e The preferred CIMOM is OpenPegasus

e The preferred source code language for providers is C.

e KonkretCMPI is used to generate C source code for providers.

e CMake is the build tool. Various aspects of provider development and
deployment are automatically handled via custom CMake macros provided
by OpenLMI.

e PyWBEM is used for client scripting in Python and implementing providers
when Python is the language of choice.

http://sourceforge.net/apps/mediawiki/pywbem/index.php?title=Main_Page
https://fedorahosted.org/openlmi/
http://sourceforge.net/apps/mediawiki/pywbem/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/pywbem/index.php?title=YAWN
https://fedorahosted.org/openlmi/
https://collaboration.opengroup.org/pegasus/
http://konkretcmpi.org/
http://www.cmake.org/
http://sourceforge.net/apps/mediawiki/pywbem/index.php?title=Main_Page

Set-Up Your Environment
This assumes you are working on a Fedora/RHEL/CentOS RPM based Linux

distribution, although the basic concepts remain the same some package names
and commands may differ slightly for other Linux distributions.

Install CIMOM
Install the OpenPegasus package

sudo yum install tog-pegasus

Make sure OpenPegasus is running. Note: provider registration only works
when OpenPegasus is running.

sudo systemctl start tog-pegasus.service

If you want the OpenPegasus CIMOM service to automatically start after a
reboot:

sudo systemctl enable tog-pegasus.service

Tip: pegasus can easily be controlled via the cimserver command, in fact
the systemd service control mechanisms simply calls the cimserver command.
During development you may find it easier to start, stop, and check the status of
the OpenPegasus CIMOM service via cimserver rather than by the systemctl
infrastructure.

Install YAWN

YAWN is not a requirement but being able to browse the CIM class hierarchy and
invoke your provider from within your web browser is so handy most developers
will want this. YAWN runs in the Apache web server therefore you will need
to have Apache (e.g. httpd) installed and running to be able to browse at the

following URL http://host/yawn where host is the host name you’ve installed
YAWN on.

sudo yum install httpd yawn
Then make sure the Apache httpd service is running.

sudo systemctl start httpd.service

10

Optionally enable Apache httpd to start after booting.
sudo systemctl enable httpd.service

See the section on OpenPegasus authentication to understand the username and
password prompts required by YAWN when you first connect.

Install Client Tools

OpenLMI Tools provides a CIM shell and a few other handy utilities.
sudo yum install openlmi-tools

Various WBEM command line utilities are provided by sblim-wbemcli
sudo yum install sblim-wbemcli

Python libraries which allow you to write simple Python scripts for WBEM
operations are provided by pywbem.

sudo yum install pywbem

Install Provider Development tools

You will need KonkretCMPI, CMake and tools provided by OpenL.MI.

sudo yum install cmake konkretcmpi openlmi-providers-devel

Begin Provider Development (C Language)

During this discussion we’re going to use XXX as the name of your provider, you
will need to substitute XXX for your provider name.

You must use CMake to take advantage of the OpenLMI development support.
It expects the following structure in your development tree.

CMakeLists.txt
mof/LMI_XXX.mof

11

CMake will read the contents of CMakeLists.txt and produce a set of native
Makefiles. CMake macros provided by openlmi-providers-devel will also set
things up to invoke konkretcmpi to translate your LMI_XXX.mof file into a set
of C source code files.

The defaults for CMake do not correspond to the defaults when CMake is invoked
when producing OpenLMI RPM’s. The goal here is not so much to match RPM
but rather to produce a build that matches the expected system conventions
and the OpenLMI conventions.

Since you probably won’t be producing an RPM for your provider initially it’s
best to make sure CMake is configured to generate Makefiles that will build
using the same conventions for building and installing as is done in RPM. There
are various ways to do this but one simple technique is to define a shell script
which invokes CMake with the matching RPM configuration, for example:

#!/bin/sh

/usr/bin/cmake -DCMAKE_VERBOSE_MAKEFILE=0N \
-DCMAKE_INSTALL_PREFIX:PATH=/usr \
-DINCLUDE_INSTALL DIR:PATH=/usr/include \
-DLIB_INSTALL_DIR:PATH=/usr/lib \
-DSYSCONF_INSTALL DIR:PATH=/etc \
-DSHARE_INSTALL_PREFIX:PATH=/usr/share \
-DBUILD_SHARED_ LIBS:BOOL=0N .

if [$7 -eq 0]; then
make
fi

During development it is useful to turn on debugging symbols and turn off
optimization which complicate debugging using gdb. If you add

export CFLAGS=’-g -00’

to the above script before invoking cmake it will add these options to the Maketfile.
CMake has other mechanisms for producing debug builds (i.e. build targets). If
you prefer those CMake mechanisms that’s fine too but I found the above to be
simple and expedient.

You will need a valid CMakeLists.txt file that follows the OpenLMI CMake
conventions. Since OpenLLMI is under active development the contents of the
example CMakeLists.txt file may evolve or a CMakeLists.txt template may
be included in the future but for the time being the example CMakeLists.txt
represents a viable starting point.

12

Note: If you aren’t familiar with CMake it can be difficult to figure out how to
do a few simple things. For example if your provider is dependent upon another
library how do you get things set up such that the include files are found and
the right libraries are added when linking? In the following CMakeLists.txt
example I've added a dependency on glib2 only for the purposes of illustration,
if your provider does not use glib2 you won’t need any of the items in the
CMakeLists.txt file with the string “glib” in it. But you can use “glib” items as
a model for what needs to be added for any dependency you do have. Also note
that glib2 installs pkgconfig files which define how to compile and link against
glib2. Most library packages ship with pkgconfig files, the glib2 example
assumes pkgconfig files are available for the dependency, if your dependency does
not provide pkgconfig files you’ll have to adjust accordingly.

cmake_minimum_required (VERSION 2.6)
include (OpenLMIMacros)
find_package (CMPI REQUIRED)
find_package (KonkretCMPI REQUIRED)

find_package (PkgConfig QUIET)
pkg_check_modules(GLIB2 glib-2.0 REQUIRED)

add_subdirectory (mof)

set (PROVIDER_NAME XXX)
set (LIBRARY_NAME cmpilMI_${PROVIDER_NAME})
set (MOF LMI_XXX.mof)

Add all your .c source files here
set (provider_SRCS

LMI_XXXProvider.c
)

set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall")

konkretcmpi_generate (${MOF}
CIM_PROVIDERS
CIM_HEADERS

add_library (${LIBRARY_NAME} SHARED
${provider_SRCS}
${CIM_PROVIDERS}
${CIM_HEADERS}

13

FIXME - /usr/include/openlmi shouldn’t be hardcoded, needed for globals.h
OpenLMI should provide a pkgconfig file
include_directories (${CMAKE_CURRENT_BINARY_DIR}

${CMPI_INCLUDE_DIR}

${GLIB2_INCLUDE_DIRS}

/usr/include/openlmi

)

target_link_libraries(${LIBRARY_NAME}
openlmicommon
${KONKRETCMPI_LIBRARIES}
${GLIB2_LIBRARIES}
)

Create registration file
cim_registration(${PROVIDER_NAME} ${LIBRARY_NAME} ${MOF} share/openlmi-providers)

install(TARGETS ${LIBRARY_NAME} DESTINATION 1ib${LIB_SUFFIX}/cmpi/)

Perform a Build

Your mof/LMI_XXX.mof file will need to have been populated with something
to start with. At this point you may want to refer to the KonkretCMPI
Documentation to understand the basic development process with Konkret CMPI
and follow it’s example tutorial.

Understanding KonkretCMPI Behavior

The role of KonkretCMPI is to read a MOF file and generate C code definitions
and code stubs necessary to implement your provider. KonkretCMPI generates
3 distinct sets of files:

e .h C header files
e .c C implementation files

o .reg CIMOM registration files

Anytime your mof file changes KonkretCMPI needs to run again to make sure
the generated files are in sync with the mof file contents. If KonkretCMPI sees
that you are missing any of the generated .c files it will generate the .c files for
you. However if KonkretCMPI finds an existing .c file it will not overwrite
the .c file. This is because you will have likely added your custom provider
implementation code to these files and you don’t want to lose your work.

14

http://konkretcmpi.org/KonkretCMPI.html
http://konkretcmpi.org/KonkretCMPI.html

The header files are directly tied to the definitions found in the mof file. It is
essential those definitions be correct and reflect the current contents of the mof
file. Therefore KonkretCMPI always overwrites generated .h files.

Tip: Do not add any custom content to any of the generated .h files, your
content will be lost every time KonkretCMPI runs due to a mof file change. If
you did add any custom content to a generated .h file you’ll have to merge it back
in, this is a pain. A better approach is to put custom header style information
in an independent header file and include it in your .c file.

Note: Because KonkretCMPI will not overwrite an existing .c file you may need
to merge function prototype information back into your .c file. You typically
only need to do this when a CIM method signature is modified in the mof file or
you’ve added a new CIM method. It’s much easier to merge function prototypes
back into your .c file than it is to move the .c file aside to allow KonkretCMPI
to regenerate the .c file and then subsequently needing to merge all your custom
code back into the newly generated .c file.

Tip: It’s easier to do your provider development if your mof file is complete and
exactly as you want it. This way you’ll have fewer issues with KonkretCMPI
regenerating files, needing to unregister and re-register your provider, or won-
dering why you can’t see your updated mof (because you forget to redo the
registration). But sometimes it’s easier to develop your mof incrementally, you'll
have to decide which development strategy better suits your style and situation.

Installing and Registering Your Provider

If all has gone well after typing make you will have compiled your .c files and
linked them into a provider module. Now you need to install your provider so
your CIMOM can load it.

In order for your CIMOM to expose your provider it must be registered with
your CIMOM. This requires the following 3 files to have been installed in the
expected location in your file system.

e provider module (i.e. your provider .so file)
e provider mof file

e provider registration file
The following command will install these files

sudo make install

15

Note: This is one reason it’s critical to invoke CMake with the overridden
defaults otherwise the installation directories will not default to the system
defaults.

Now that the files are installed you must register your provider. OpenLMI
provides a utility script openlmi-mof-register to simplify this task. Note:
the openlmi-mof-register script is also used to unregister a provider, more on
that in a moment.

Substitute XXX for the name of your provider.

sudo openlmi-mof-register register \
/usr/share/openlmi-providers/XXX.mof \
/usr/share/openlmi-providers/XXX.reg

Note: OpenPegasus must be running when you register or unregister a provider.

Tip: During your provider development cycle of edit/build/test you do not need
to re-register your provider if your mof file did not change. It’s sufficient to
just install your updated provider .so (e.g. sudo make install) and restart
the CIMOM. However if your mof file changed your CIMOM won’t know about
the mof changes because one of the things registration does is import the
mof definitions into the CIMOM. After editing your mof you will need to
unregister your old provider and re-register it again. In summary only after a
mof modification you will need to do the following;:

sudo openlmi-mof-register unregister \
/usr/share/openlmi-providers/XXX.mof \
/usr/share/openlmi-providers/XXX.reg

sudo make install

sudo openlmi-mof-register register \
/usr/share/openlmi-providers/XXX.mof \
/usr/share/openlmi-providers/XXX.reg

Testing Your Provider

Once your provider is installed and registered you will want to exercise it. Here
are some simple ways you can do that, which one you choose is up to you, all
boil down to invoking a CIM client against your CIMOM.

e Use YAWN in your web browser, open a URL (e.g. ‘http://localhost/yawn)
and navigate to one of your provider classes.

e Write a Python script using PyWBEM and run that script.
e Use the OpenLMI shell

16

Development Debugging Tricks and Techniques
Starting, Stopping and Controling OpenPegasus

Don’t use the systemctl service command to stop and start OpenPegasus,
instead use the cimserver command, it’s much easier, plus you can specify one
time configuration parameters useful for debugging (see below).

Run OpenPegasus In The Foreground

You can insert printf debugging statements in your code but you won’t see them
on the console unless you run OpenPegasus in a special way. Also, you will want
to run OpenPegasus in the foreground, not allow it to fork a daemon process
or spawn child processes. Running OpenPegasus in the following way is much
friendlier during the development cycle.

sudo cimserver daemon=false forceProviderProcesses=false

When run this way you’ll see any printf’s you’ve added, they will appear in your
console. When you’re done with the current testing cycle simply control-c and
OpenPegasus will exit. A rapid development cycle might look like this:

Edit your provider source code

make

sudo make install

sudo cimserver daemon=false forceProviderProcesses=false
Test via YAWN or a script

Using the Debugger

It’s easy to set a breakpoint in your provider and have gdb break there for you.
Of course you’ll want to have compiled with -g to turn debugging symbols on
and you’ll probably also want to disable optimization with -O0 so that single
stepping in the debugger follows your source code instead of jumping around.

Create a .gdbinit file in your local directory. Let’s say you want to break on
LMI foobar

set breakpoint pending on
b LMI_foobar
r daemon=false forceProviderProcesses=false

For security reasons current versions of gdb require you to enable reading the
the local .gdbinit file, one solution is to add this to your ~/.gdbinit file:

17

add-auto-load-safe-path .
set auto-load local-gdbinit on

Then run OpenPegasus under gdb
sudo gdb /usr/sbin/cimserver

Exercise your provide in your preferred fashion and you should break. Then
debug in gdb as you would normally do.

Of course like most things in life there are multiple ways of doing things, the
above is just one suggestion, you could use gdb to attach to the running cimserver
process or any number of other mechanisms, use your programming skills and
knowledge to find a methodology that works best for you.

Controlling OpenPegasus Behavior

Advanced startup properties for CIMOM provides useful information about
available options to control OpenPegasus behavior.

OpenPegasus Logging and Tracing

OpenPegasus has a tracing facility. You can utilize the CMPI logging commands
to record debug and/or informational messages to the OpenPegasus trace file
instead of printf statements. This is a cleaner solution once your provider more
stable and you can dispense with temporary printf statements.

The CMPI logging and trace functions are CMLogMessage and CMTraceMessage
and are defined in /usr/include/cmpi/cmpimacs.h, refer to that file for their
usage.

But more importantly when you’re baffled about what OpenPegasus is doing it
can be invaluable to have full logging and trace information at your disposal to
peruse. The trace file is:

/var/lib/Pegasus/cache/trace/cimserver.trc

To ratchet up the verbosity of the trace information you may want to run
OpenPegasus like this:

sudo cimserver daemon=false forceProviderProcesses=false \
logLevel=TRACE tracelevel=5 traceFacility=File \

traceComponents=A11

Detailed information about OpenPegasus tracing can be found in OpenPegasus
Tracing User Guide

18

http://publib.boulder.ibm.com/infocenter/iseries/v6r1m0/topic/rzatl/rzatladvstartup.htm
http://cvs.opengroup.org/cgi-bin/viewcvs.cgi/*checkout*/pegasus/doc/TracingUserGuide.pdf?rev=1.3
http://cvs.opengroup.org/cgi-bin/viewcvs.cgi/*checkout*/pegasus/doc/TracingUserGuide.pdf?rev=1.3

Dumping Method Parameters To the Console

Sometimes it’s nice to be able to see the CIM method parameters being passed
to your CIM method by dumping them to the console (of course you could
also run under gdb too and break on the method). KonkretCMPI generates a
Args_ Print function in the generated .h file you can call.

To print method YYY args in konkret:

In XXX_DispatchMethod() in XXX.h

Add

XXX _YYY_ Args Print(&args, stdout);

after XXX_YYY_ Args InitFromArgs (otherwise args won’t be initialized.)

Provider Development Tips

MOF Development Issues
Structures and Array of Structures as CIM Method Parameters

There is no way to pass a complex object in a CIM method call (i.e. a structure
or class). CIM arrays are limited to simple scalar base types (int, string, etc.).
Thus there is no way to pass things like (key,value) pairs directly. Instead one
needs to define an array for the key names, and an array for the values (of a
specific base type). To find the value of a key look up it’s value at the same
index in the as it appears in the key array. The same holds true for any array
of structures, you have to decompose the structure members into individual
arrays and recombine them back together by indexing into each array using the
same index. Don’t forget you’ll need to declare the array with the ArrayType (
"Indexed") qualifier in the MOF file. This is very reminiscent of programming
in FORTRAN, ugh!

KonkretCMPI Oddities

KonkretCMPT doc uses this example invocation (note KonkretCMPI invocation
is normally done via CMake macros)

konkret -s KC_Widget -m Widget.mof KC_Widget=Widget

But there is no man page describing what the args do in detail and the -h option
is very terse and omits describing the final arg and for a long it was not clear to
me what that arg was doing. The CMake macro konkretcmpi_ generate does
not use the same arg list as what is documented above which is also confusing.

19

Apparently the form used in the Konkret doc of KC_Widget=Widget is an alias
mechanism which modifies the class name as found in the MOF file (lhs) to an
alternate name (rhs) used in the generated C code. The type names, function
names, generated file names etc. will all use the rhs alias, otherwise they will
use the class name as found in the MOF.

OpenPegasus Authentication

The OpenPegasus Administrator’s Guide gives a brief overview of how OpenPega-
sus handles authentication. But the following document which is installed along
with the tog-pegasus package on Red Hat systems gives a more comprehensive
overview.

/usr/share/doc/tog-pegasus—+*/README.RedHat .Security

The short story is root user authentication works for local connections but
is denied for network connections. If you’ve installed YAWN then the user
authentication prompt issued by YAWN appears to OpenPegasus as a local
user and root will work. However this is quite insecure and should be avoided.
Root authentication is possibly justified in constrained cases such as during
development where the target machine is on an isolated local network (i.e. virtual
machines used for test and development).

The preferred mechanism is to use the pegasus user account which is created
when tog-pegasus is installed. However there is no password established for the
pegasus user during install (this is a security precaution) and you will need to
set the pegasus user password (requires root privileges)

sudo passwd pegasus XXX

where XXX is the pegasus password. After this is done you can authenticate to
OpenPegasus with the username pegasus and the password you created.

Advanced CIM Topics

Resource Configuration

How one handles configuration of CIM elements is a surprisingly complex topic
and woefully under documented. If you’re developing your own profile you’ll
need to understand these topics. The best way to learn about configuration
approaches is to study the existing CIM profiles and see how they are handled
in the example profiles.

20

http://cvs.opengroup.org/cgi-bin/viewcvs.cgi/*checkout*/pegasus/doc/Admin_Guide_Release.pdf

One naive approach would be to provide a CIM method to set configuration
parameters on your CIM object. This is a traditional approach in many pro-
gramming APT’s. However the CIM Schema and existing models often take a
different approach utilizing the following CIM classes and associations. This is
probably worth entire tutorial on it’s own. Here is a brief introduction:

The following classes are used as base classes to contain configuration parameters.

e CIM_SettingData

e CIM_Capabilities
The following association classes are used to form links between the SettingData
and Capability derived classes.

e CIM_ElementSettingData

e CIM_ElementCapabilities

e CIM_SettingsDefineCapabilities

e CIM_SettingsDefineState
The way these can be combined is many fold. Naively you may assume you would
have only one SettingData instance where the entirety of the configuration
parameters are stored. But in fact you may have many such instances joined

in a web by associations, some indicating current values, defaults values to be
applied next, minimum values, maximum values, etc.

CIM__SettingData

ChangeableType Has the following possible values

e Not Changeable - Persistent
e Changeable - Transient
e Changeable - Persistent
e Not Changeable - Transient

CIM_ SettingData is linked via CIM__SettingsDefineState and CIM__SettingsDefineCapabilities
associations.

21

CIM_ ElementSettingData CIM_ ElementSettingData has the following
properties:

IsDefault Has the following possible values

e Unknown
o Is Default
e Is Not Default

IsCurrent Has the following possible values

e Unknown
e Is Current

e Is Not Current
IsNext Has the following possible values

e Unknown

e Is Next

e Is Not Next

e Is Next For Single Use

CIM__ElementCapabilities

Characteristics[] Has the following possible simultaneous values

e Default

e Current

CIM__SettingsDefineCapabilities

PropertyPolicy Has the following possible values

e Independent

e Correlated
ValueRole Has the following possible values

e Default
e Optimal
e Mean

e Supported

22

ValueRange Has the following possible values

e Point
o Minimums
e Maximums

Increments

Tying the Configuration Classes Together

If you're looking at a CIM_ ElementSettingData association the IsDefault
property will tell you if the group of configuration parameters pointed by the
SettingData reference are the default values. Likewise the IsCurrent property
tells you if the configuration parameters pointed by the SettingData reference
are current values or not. The IsNext property tells you if the the configuration
parameters pointed by the SettingData reference will be applied the next time
configuration is applied and whether those parameters will permanently persist.

The CIM_ ElementCapabilities association tells you if the CIM__ Capabilities
pointed to by the association for a CIM_ManagedElement (i.e. an object) are
the defaults or the current values.

The CIM__SettingsDefineCapabilities association tells you how to interpret the
SettingData being pointed to. There may be many SettingData objects needed
to fully specify the configuration. The PropertyPolicy property tells you if you
have to correlate the SettingData values or if you can treat them independently.
The ValueRole property tells you what role the pointed to SettingData plays,
i.e. defaults, optimal, average, etc. The ValueRange property tells you if the
pointed to SettingData are a single set of values, just the minimum values, just
the maximum values, or represent the increments each property value can be
stepped by.

In practice what the ValueRole property does is force you to have many Set-
tingData objects to specify the configuration for an element. Let’s say your
CIM element has some properties that can only be specified within a minimum
and maximum range. You would then create a SettingData containing the valid
minimums and point to it via a CIM_ SettingsDefineCapabilities association.
Likewise you would create a SettingData containing the valid maximums and
point to it via a CIM__SettingsDefineCapabilities association. To ascertain the
valid range you have to query for CIM__SettingsDefineCapabilities where the
ValueRange property is Minimums, query for the Maximums and then follow
the association pointers to each respective Capabilities to form the min/max
range. By the same token a CIM_ SettingsDefineCapabilities whose ValueRange
property is Point indicates a single set of values rather than a range. Ultimately
you have to find all the CIM__SettingsDefineCapabilities objects bound to the
element you want to configure and interpret them.

23

Are you confused yet? It’s very convoluted and the possible combinations are
large. Don’t you wish you could just call a method and set the configuration
parameters or query them? The best way to wrap your head around all this is
to study the various profiles utilizing these classes, especially study the use case
examples in Chapter 9 of the profile, that will help solidify your understanding.

FAQ

Q: How do I make a CIM method a class method as opposed to a instance
method?

A: An instance method is bound to the instance it is called from, in object
oriented languages the instance is often called “self” or “this”. This is the default
method binding in CIM. However you can specify class methods as well which
are not bound to an instance, to do this add the Static qualifier to the list of
qualifiers belonging to the method.

Vocabulary

CIM Common Information Model is schema and associated specification which
details how to represent the elements of a computer system in order to
manage those elements. This yeilds a common and portable mechanism by
which IT administrators can manage their computing resources. CIM is
defined by the DMTF.

CIM Schema The CIM Schema is a collection of predefined CIM classes which
forms the building blocks for modeling in CIM. The CIM Schema is
expressed in MOF (Managed Object Format) syntax.

CIMOM Common Information Model Object Manager. Sometimes referred
to as a broker the CIMOM is a network connected service running on
a managed computer which grants access to the CIM providers on the
managed computer. A CIM client connects to the CIMOM in order to
manage a specific resource on the managed computer. Those resource
instances are made available to the CIMOM by the providers loaded by
the CIMOM.

CMPI Common Manageability Programming Interface. CMPI is an open
standard defined by the Open Group which defines the programming API
between a CIMOM and a CIM provider. In the absence of CMPI each
CIM provider would need to be coded to the API of the CIMOM it was
loaded into. CMPI allows a CIM provider to be written once and utilized
by different CIMOM implementations.

24

http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/CIM
http://www.opengroup.org/standards/enterprise-management

DMTF Distributed Management Task Force is an industry consortium defining
open standards for computer system management.

KonkretCMPI A tool used to aid development of CIM providers.
KonkretCMPI reads a MOF specification file and generates a set
of C header files, C program files and provider registration files. The
primary purpose of KonkretCMPI is to insulate a provider author from the
CMPI API by providing all the necessary “glue code” needed to adhere
to the CMPI specification. This allows the programmer to focus on the
particulars of the provider.

MOF Managed Object Format is the syntax used to describe the CIM Schema.
MOF files are used to define provider interfaces.

Provider A software module which is loaded by the CIMOM broker running
locally on a managed system which provides information about a type
(i.e. class) of resource, for example network interfaces. There may be
multiple instances of that resource class. The Provider is responsible for
managing all instances of that resource class. The Provider in addition to
providing information about a resource instance may optionally allow the
resource instance to be configured or acted upon.

WBEM Web-Based Enterprise Management. A collection of standardized
technologies providing unified management of distributed computing envi-
ronments based on CIM concepts.

25

http://www.dmtf.org/
http://konkretcmpi.org/
http://www.dmtf.org/standards/CIM
http://www.dmtf.org/standards/wbem

	License
	Introduction
	WBEM Components

	What do I need to know to write a CIM provider?
	CIM Schema, MOF and Profiles
	CIM Schema and MOF Syntax
	Models and Profiles

	Are you creating a model or implementing an existing profile?
	CMPI and KonkretCMPI
	Tutorials
	Tools and Packages
	CIMOM's
	Development Tools
	Client Tools

	Writing a CIM provider for OpenLMI
	OpenLMI Development Conventions
	Set-Up Your Environment
	Install CIMOM
	Install YAWN
	Install Client Tools

	Install Provider Development tools
	Begin Provider Development (C Language)
	Perform a Build
	Understanding KonkretCMPI Behavior

	Installing and Registering Your Provider
	Testing Your Provider
	Development Debugging Tricks and Techniques
	Starting, Stopping and Controling OpenPegasus
	Run OpenPegasus In The Foreground
	Using the Debugger
	Controlling OpenPegasus Behavior
	OpenPegasus Logging and Tracing
	Dumping Method Parameters To the Console

	Provider Development Tips
	MOF Development Issues
	Structures and Array of Structures as CIM Method Parameters

	KonkretCMPI Oddities
	OpenPegasus Authentication

	Advanced CIM Topics
	Resource Configuration
	Tying the Configuration Classes Together

	FAQ
	Vocabulary

